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ABSTRACT

RMark provides a formula-based interface for analysis of capture-recapture data with

the program MARK. RMark reduces the development time of models and removes the

potential for errors introduced from manual creation of design matrices in MARK. By

providing an interface to MARK in R, all of the tools in R can be accessed to extract

and manipulate data, plot or simulate. It also provides the potential to include MARK

analysis in a reproducible document with Sweave and LATEX. I demonstrate RMark

using the commonly analyzed European dipper data.
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INTRODUCTION

The most comprehensive software package for analysis of capture-recapture data is

the program MARK (White and Burnham 1999). While it is unparalleled in the range of

models and quality of the user documentation (http://www.phidot.org/software/

mark/docs/book/), the interface for building models can be limiting for large data

sets and complex models. While there is some capability for automatic model cre-

ation in MARK, most models are built manually with a graphical user interface to

specify the parameter structures and design matrices. Manual model creation can be

useful during the learning process but eventually it becomes a time-consuming and

sometimes frustrating exercise. Also it can be a very real and unnecessary potential

source of error in the analysis. Finally, for those that analyze data from on-going

monitoring programmes, there is no way to extend the capture-history in MARK, which

means all of the models must be re-created manually unless you pad the data for all

future sampling occasions.

To make my own analyses more reliable and reproducible (Donoho 2010), I de-

veloped RMark, an R (R Core Development Team 2012) package that provides a

formula based interface for MARK. RMark has been available since 2005 and is on the

Contributed R Archive Network (CRAN) (http://cran.r-project.org). RMark

contains functionality to build models for MARK from formulas, run the model with

MARK, extract the output, and summarize and display the results with automatic

labeling. RMark also has functions for model averaging, prediction, variance com-

ponents, and exporting models back to the MARK interface. In addition, all of the

tools in R are available which enable a completely scripted analysis from data to



results and inclusion into a document with Sweave (Leisch 2002) and LATEX to create

a reproducible manuscript.

Here I provide an overview of the RMark package. For more detailed documen-

tation, refer to the online documentation at http://www.phidot.org/software/

mark/rmark/ and the help within the RMark package.

BACKGROUND

RMark does not fit models to data. MARK does the model fitting. RMark creates an

input text file, runs MARK to fit the model to the data and extracts the results from the

MARK output file. Thus, to understand RMark, some background on MARK is necessary.

MARK can currently analyze data for 140 model variations. In the MARK interface,

selecting Help/Data Types will show all of the models and which are supported by

RMark. Even though the model parameters and their structures vary, MARK and RMark

use a standard approach to model construction. I will use the Cormack-Jolly-Seber

(CJS) model as an example here to describe model construction. Extension to other

models is straightforward by incorporating additional parameters.

Capture-recapture data are typically represented as an encounter history. For

CJS models, the encounter history is a sequence of zeroes and ones, where a 1 codes

for an encounter and a 0 means the animal was missed. Each position in the capture

history represents a sampling occasion that occur at a sequence of times t1, t2, ..., tm

for m occasions. For example, a sequence of 101 means the animal was initially

encountered (or released) on the first occasion at t1, not encountered on the second

occasion at t2, and encountered on the third and last occasion at t3.

The parameters in CJS are apparent survival (φ) and capture probability (p).
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These parameters can differ by time, age, cohort, grouping factor (categorical) vari-

ables such as sex and individual numeric covariates like weight. The parameter

structure for the model is specified with a parameter index matrix (PIM) which

are typically different across types of parameters. For example, with four sampling

occasions, a time PIM structure will have three potential survival parameters, one

for each time interval between occasions (Table 1). A constant PIM would have a

single index for each parameter (Table 1). A model with a time PIM for survival and

constant PIM for p has four parameters and can be represented by Phi(t)p(.) where

a “.” implies constant. Alternative PIMs can be specified but the all-different PIM

(Table 1) used by RMark allows construction of any possible model.

Typically, a model with all-different parameters is not useful but restricted (sub-

set) models can be constructed with a design matrix. For example, with an all-

different PIM, the design matrix for Phi(t)p(.) is shown in Table 2. If X is the

design matrix and β is the vector of parameters, the real parameters, φ and p, are

computed with a default inverse logit link function:[
φ

p

]
= [1+ exp(−Xβ )]−1

For the example in Table 2, we would have β = (β1,β2,β3,β4). Some example real pa-

rameter calculations are φ2 = [1+ exp(−β1 −β2)]
−1 and p6 = [1+ exp(−β4)]

−1 where

p6 represents the sixth parameter in an all-different PIM for p but it is actually index

value 12 and the twelfth row in the design matrix. Other link functions are available

and some more natural link functions like log are used to bound real parameters

above 0 (e.g. abundance).

In R, the function model.matrix can be used to construct design matrices with a

formula from data. In this case, the data are not the capture histories nor necessarily
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information about the animals. To use model.matrix, RMark creates ’design data’

which are data attributed to the possible parameters. The concept of design data

will be unfamiliar to anyone using MARK and it should not be confused with a design

matrix which is created from the design data. “Design data” could have also been

called“parameter data”because they are data associated with the various parameters

in the model. The best way to describe design data is with an example.

For a CJS model with triangular PIMs, each row in the PIM represents a cohort

(animals initially first caught on the occasion), columns represent times/occasions,

and diagonals represent age (or time since marking) (Table 3). RMark creates design

data cohort, age, and time as factor (categorical) variables with labels shown in

(Table 3). Also, it creates numeric variables Cohort, Time and Age and each has an

origin of 0 (e.g. Time = 0 for time = 1990 in φ design data). In MARK, factor variables

for individual animals (e.g. sex) are handled as groups and each group has a separate

PIM for each parameter. If there was a group variable of sex for the simple example,

the design data for φ and p would each have 12 rows and an added field ’sex’ that

could have values ’F’ for the first six rows and ’M’ for the last six rows.

Using the design data in Table 3, the formula ~time for φ and ~1 (intercept only)

for p would create the complete design matrix in Table 2. RMark uses model.matrix

with the design data and formula for each parameter and then combines them into

a complete design matrix for all of the parameters. Typically, β parameters are not

shared so the design matrices are offset and the gaps are filled with zeros as shown

below.

Phi design matrix 0
0 p design matrix
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In Table 2, the design matrix for φ is in rows 1 to 6 and columns 1 to 3 and the

design matrix for p is in rows 7 to 12 in column 4. Rows 7 to 12 in columns 1 to

3 and rows 1 to 6 in column 4 are filled with zeros. Occasionally model parameters

describe a similar quantity (p and c in closed capture models) and they will share

columns in the design matrix. RMark copes with this by combining the design data

for the parameters prior to building the design matrix.

In developing models with many parameters, groups and occasions, it became

clear that using all-different PIM structures resulted in very large design matrices

with long run times in MARK and some models would simply exceed the available

memory. To avoid this problem, RMark simplifies the PIM structure after building

the design matrix to use only as many indices as there are unique rows in the design

matrix. With the example and the model Phi(˜1)p(˜1) (same as Phi(.)p(.)), there

are only two unique rows in the design matrix even though there are 12 rows with

the all-different PIMs. Prior to building the input file for MARK, with these formulas,

the indices 1-6 would be set to 1 and 7-12 would be set to 2. The simplified PIMs

and a design matrix with two rows and two columns would be passed in the file to

MARK. The all-different indices are maintained in RMark to handle model averaging of

models because each model could have a different simplified PIM structure but all

models will have the same all-different PIM structures. Simplification is transparent

except that the labeling of real parameters in the MARK output file can be confusing.

However, real parameter labeling in the summary output and displays in RMark will

be correct.
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DIPPER DATA EXAMPLE

As an example, I use the European dipper (Cinclus cinclus) capture-recapture data

analyzed by Lebreton et al. (1992). To demonstrate the use of individual covariates

for φ , I added an imaginary static covariate “weight” (set to a random value between

1 and 10). Also, for modelling φ I use a flood covariate with a value of 1 for 1982

and 1983 and 0 otherwise.

The dipper data are contained in RMark and can be retrieved using data(dipper)

after attaching the package (library(RMark)). For your own data, you can use the

functions convert.inp to convert an existing MARK input file or import.chdata which

is a convenience wrapper for read.table, or you can use any of the data input

functions in R. The only restriction on the data frame is that it must contain a

variable named ch which is a character string and if the capture history represents

more than one animal, the field name for capture frequencies is named freq. The

frequency is assumed to be 1 for each history if the variable freq does not exist.

Any number or type of additional fields can be included. The only restrictions are

that grouping variables (e.g. sex) must be factor variables, and individual (animal-

specific) covariates (e.g. weight) must be numeric. The only other restriction is on

the naming of time-varying individual covariates.

Once the data are in the R workspace, a model can be run with a single call

to the function mark; however, that is only useful for demonstration purposes. It is

better to follow a four step procedure:

1. process the data to identify the model and data attributes (process.data),

2. make and modify (if necessary) the design data (make.design.data),
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3. write a function for the set of models to be fitted, and

4. run the function to fit the models.

Clearly, more steps will ensue to look at goodness of fit, model averaging and pre-

diction, and plotting results. But, here I’ll focus on the initial four steps. The

documentation provides more details on other aspects such as setting initial values

and fixing real parameters. I use a naming convention for objects in the steps but

any valid object names can be used.

Step 1 is analogous to the first step with MARK in which you specify the type of

capture-recapture model and the various descriptors like time intervals. Many of the

items you specify on the MARK screen like number of occasions, group labels, and

individual covariate names are set for you in RMark. But others like title, number of

mixtures and time intervals are specified as arguments. The function process.data

creates a list structure that contains the original dataframe and the various attributes

that describe the data and how it should be analyzed. This list structure is called

a processed dataframe and it is used for analysis because it has the attributes that

describe how the data should be treated (e.g. CJS vs JS). For this example, we

need to specify that we want to use CJS (“recaptures only”) as the model structure,

the time value for the first occasion (begin.time) is 1981 so we can interpret the

time labeling more easily, and that we want to use the factor variable “sex” to define

groups. These are all passed as arguments in the call to process.data and the result

is stored in dipper.proc as shown below:
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> dipper.proc=process.data(dipper, model="CJS",

+ groups="sex", begin.time=1981)

> names(dipper.proc)

[1] "data" "model" "mixtures" "freq"

[5] "nocc" "nocc.secondary" "time.intervals" "begin.time"

[9] "age.unit" "initial.ages" "group.covariates" "nstrata"

[13] "strata.labels" "counts" "reverse"

> dipper.proc$nocc

[1] 7

> dipper.proc$time.intervals

[1] 1 1 1 1 1 1

Values such as number of occasions (nocc) are computed from the data and others

like time intervals have default values. The data are in dipper.proc$data. Some

elements in the list are unused depending on the model. Little needs to be done

with the processed dataframe because it is just used as a container to store the data

and its attributes. If you modify the original dataframe, just remember to run it

through process.data again because the unchanged data are stored in the processed

dataframe and that is what is used in the analysis and not the original dataframe.

You’ll also need to reprocess the dataframe if you wish to change processing argu-

ments like group structure.

Step 2 is to create the design data and modify it, if necessary. Below we create the

design data for this dipper example and although there are arguments that can be set

with the function, none are needed here. The function make.design.data is passed

the name of the processed dataframe and the result is stored in dipper.ddl where

the suffix is short for design data list because the result is a list of dataframes, one

for each type of parameter in the model and a list of pimtypes for each parameter.
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> dipper.ddl=make.design.data(dipper.proc)

For CJS, the dataframes are Phi and p and each dataframe contains 42 records: 21

for females and 21 for males. There are five factor variables, group, sex, cohort, age

and time and there are three numeric variables Cohort, Time and Age which are

continuous versions of the respective factor variables with the lower case letter. The

group variable is a composite of the values of all factor variables used to define the

groups but when there is a single factor variable as in this case it is redundant.

With these default design data you can specify a fairly rich set of models; however,

you are not limited to the default design data. Additional variables can be added

(e.g. effort or environmental conditions) and used in the formulas. For example, you

can add fields that bin age, time or cohort to constrains parameters to be the same

within each bin. Also, you can define additional variables such as a flood variable

with a value 1 to specify the years in which there was a flood. Floods affected survival

in 1982 and 1983, so a variable flood is assigned 1 for 1982 and 1983 and everywhere

else it is 0.

> dipper.ddl$Phi$flood=ifelse(dipper.ddl$Phi$time%in%1982:1983,1,0)

Any group, cohort or time-specific covariate (e.g. effort, weather) can be included

in the design data and these can be used in the formula to create the design matrix.

Below are the design data for the first seven Phi parameters for Females and Males

excluding the indices:
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> dipper.ddl$Phi[c(1:7,22:28),-(1:2)]

group cohort age time occ.cohort Cohort Age Time sex flood

1 Female 1981 0 1981 1 0 0 0 Female 0

2 Female 1981 1 1982 1 0 1 1 Female 1

3 Female 1981 2 1983 1 0 2 2 Female 1

4 Female 1981 3 1984 1 0 3 3 Female 0

5 Female 1981 4 1985 1 0 4 4 Female 0

6 Female 1981 5 1986 1 0 5 5 Female 0

7 Female 1982 0 1982 2 1 0 1 Female 1

22 Male 1981 0 1981 1 0 0 0 Male 0

23 Male 1981 1 1982 1 0 1 1 Male 1

24 Male 1981 2 1983 1 0 2 2 Male 1

25 Male 1981 3 1984 1 0 3 3 Male 0

26 Male 1981 4 1985 1 0 4 4 Male 0

27 Male 1981 5 1986 1 0 5 5 Male 0

28 Male 1982 0 1982 2 1 0 1 Male 1

Before I jump to step 3, let’s examine some model formula that only use fields in

the design data and I’ll demonstrate the use of model.matrix in RMark. Any formula

can be used to create the design matrix using the fields in the design data. The

formula ~1 is equivalent in MARK to the constant or “.” model, ~time is equivalent to

the “t” model and ~Time is equivalent to the “T” model with a linear trend over time.

Consider a model with time varying survival. This portion of the design matrix can

be constructed as follows (note: output restricted to first six rows):

> dm=model.matrix(~time,dipper.ddl$Phi)

> head(dm,6)

(Intercept) time1982 time1983 time1984 time1985 time1986

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 0 1 0 0 0

4 1 0 0 1 0 0

5 1 0 0 0 1 0

6 1 0 0 0 0 1
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Notice that it uses treatment contrasts and the first level of the factor variable time

(1981) is the intercept. In contrast, the pre-defined models in MARK uses the SAS

convention of specifying the last factor level as the intercept. You can get this same

behavior by re-leveling the factor variable:

> dipper.ddl$Phi$time=relevel(dipper.ddl$Phi$time,"1986")

> dm=model.matrix(~time,dipper.ddl$Phi)

> head(dm,6)

(Intercept) time1981 time1982 time1983 time1984 time1985

1 1 1 0 0 0 0

2 1 0 1 0 0 0

3 1 0 0 1 0 0

4 1 0 0 0 1 0

5 1 0 0 0 0 1

6 1 0 0 0 0 0

Here is an example that creates a design matrix for an additive model of sex and

flood. I show the first four rows of the female parameters and the last four rows of

the male parameters:

> dm=model.matrix(~sex+flood,dipper.ddl$Phi)

> dm[c(1:4,37:40),]

(Intercept) sexMale flood

1 1 0 0

2 1 0 1

3 1 0 1

4 1 0 0

37 1 1 0

38 1 1 0

39 1 1 0

40 1 1 0

>

Interactions are specified with the * operator as in this example:
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> dm=model.matrix(~sex*flood,dipper.ddl$Phi)

> dm[c(1:4,37:40),]

(Intercept) sexMale flood sexMale:flood

1 1 0 0 0

2 1 0 1 0

3 1 0 1 0

4 1 0 0 0

37 1 1 0 0

38 1 1 0 0

39 1 1 0 0

40 1 1 0 0

Step 3 involves writing a function that provides a set of parameter specifications

for each type of parameter (e.g. Phi and p) and the code to fit the models. There

are three sections to the function:

1. Creating the different specifications for each parameter. A parameter specifi-

cation is a list that gives a formula and other optional arguments like a link

and fixed real parameters. Each parameter specification should be stored in

an object with the naming convention of parameter.model name. For exam-

ple, it could be explanatory like Phi.sex_plus_flood or numerical like Phi.1.

The important aspect is that it includes the name of the parameter followed

by a period and then some additional text to differentiate between the various

specifications.

2. Call the function create.model.list with the type of model (e.g. CJS) to

create each combination of the parameter specifications.

3. Call mark.wrapper which in turn calls the mark function to fit a model for each

combination of the parameter specifications.
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Below is an example function called dipper.analysis which has no arguments (empty

parentheses). It has four parameter specifications for Phi and p. It calls cre-

ate.model.list with a model type of “CJS” so it knows the names of the parameters

to search for the list of specifications. The final line of code is the call to mark.wrapper

which has as its first argument cml which is the object created to contain the list of

models. It also has arguments data and ddl to specify the processed data and the

design data list. All arguments of function mark can be passed through mark.wrapper.

Below, I set output = FALSE to avoid all of the output being displayed. Because the

call to mark.wrapper is the last line in the function it is returned as the result when

dipper.analysis is called.

> # Create function with parameter specifications to fit models

> dipper.analysis=function()

+ {

+ # Create specifications for Phi and p

+ Phi.1=list(formula=~time)

+ Phi.2=list(formula=~-1+time,link="sin")

+ Phi.3=list(formula=~sex+weight)

+ Phi.4=list(formula=~flood)

+ p.1=list(formula=~1)

+ p.2=list(formula=~time)

+ p.3=list(formula=~Time)

+ p.4=list(formula=~sex)

+ # Create a list of combinations of parameter specifications;

+ # the argument "CJS" tells it to look for CJS parameters

+ cml=create.model.list("CJS")

+ # Call mark.wrapper; the arguments are cml and then like with

+ # the mark function the processed data and ddl are specified,

+ # but they must be named data= and ddl= because they are passed

+ # through to the mark function; I've also set output=FALSE

+ # so it doesn't show a summary for the 16 models but it will

+ # show the model being fitted and any notations or errors.

+ mark.wrapper(cml,data=dipper.proc,ddl=dipper.ddl,output=FALSE)

+ }
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Step 4 invokes the function to fit the models and store the results in an ob-

ject (dipper.results = dipper.analysis()). The object dipper.results is a list

with class “marklist” that RMark creates and understands. The list contains the

mark model object for each fitted model and the model selection table which is dip-

per.results$model.table for this set of models (Table 4). Typing dipper.results

also displays the model selection table. The models are listed in increasing order of

AICc and the row number is the model number which can be used to extract the

model . For example, if I wanted to get a summary of the best model which is model

13, I could use:

> summary(dipper.results[[13]])

The summary provides the type of fitted model, number of parameters, -2*log likeli-

hood, AICc, a summary of the beta parameters with labels created by model.matrix,

and then the real parameters shown in the PIM format for each parameter and each

group. For CJS, the PIMs are triangular and viewing the parameters in this way

makes it easy to identify the model structure. In the real parameter output (Table

5), it is easy to see the differences across the sexes and times and the pattern in

survival due to the flood covariate in 1982 and 1983. The parameters for model 2

will match those in Table 11 of Lebreton et al. (1992).

Next, I will examine a model for survival with sex and weight to describe how

individual covariates are handled. In the design matrix, individual covariates are

handled by specifying the covariate name which is “weight” in this example:
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> dipper.results[[11]]$design.matrix

Phi:(Intercept) Phi:sexMale Phi:weight

Phi gFemale c1981 c1 a0 o1 t1981 "1" "0" "weight"

Phi gMale c1981 c1 a0 o1 t1981 "1" "1" "weight"

p gFemale c1981 c1 a1 o1 t1982 "0" "0" "0"

p gFemale c1981 c1 a2 o1 t1983 "0" "0" "0"

p gFemale c1981 c1 a3 o1 t1984 "0" "0" "0"

p gFemale c1981 c1 a4 o1 t1985 "0" "0" "0"

p gFemale c1981 c1 a5 o1 t1986 "0" "0" "0"

p gFemale c1981 c1 a6 o1 t1987 "0" "0" "0"

p:(Intercept) p:Time

Phi gFemale c1981 c1 a0 o1 t1981 "0" "0"

Phi gMale c1981 c1 a0 o1 t1981 "0" "0"

p gFemale c1981 c1 a1 o1 t1982 "1" "0"

p gFemale c1981 c1 a2 o1 t1983 "1" "1"

p gFemale c1981 c1 a3 o1 t1984 "1" "2"

p gFemale c1981 c1 a4 o1 t1985 "1" "3"

p gFemale c1981 c1 a5 o1 t1986 "1" "4"

p gFemale c1981 c1 a6 o1 t1987 "1" "5"

MARK replaces the value for “weight” for each animal and computes the design matrix

and parameters for each animal. Inclusion of covariate names cannot be handled with

model.matrix. RMark creates a dummy variable with value of 1 for any individual

covariate in the formula, uses model.matrix to create the design matrix and then re-

places the values with the character string for the covariate name (e.g. “weight”) for

the appropriate columns. This enables an individual covariate to be used with inter-

actions with design data variables and other individual covariates. With individual

covariates there is no single set of real parameter estimates. However, the function

covariate.predictions can be used to compute the estimates for real parameters

identified by indices. The following code computes a range of values for the covariate

and demonstrates the use of the PIMS function to obtain the indices for a parameter.

The non-simplified PIMS are the same for all of the models.
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> # Compute min and max weights and

> # use it to construct range for plotting

> minmass=min(dipper$weight)

> maxmass=max(dipper$weight)

> mass.values=minmass+(0:30)*(maxmass-minmass)/30

> # Look at pim values to get index for female

> # and male for real parameters

> PIMS(dipper.results[[11]],"Phi",simplified=FALSE)

group = sexFemale

1981 1982 1983 1984 1985 1986

1981 1 2 3 4 5 6

1982 7 8 9 10 11

1983 12 13 14 15

1984 16 17 18

1985 19 20

1986 21

group = sexMale

1981 1982 1983 1984 1985 1986

1981 22 23 24 25 26 27

1982 28 29 30 31 32

1983 33 34 35 36

1984 37 38 39

1985 40 41

1986 42

>

There is no time variation in survival for model 11, so I can use parameter index 1

for females and 22 for males. A range of indices could be used if survival varied by

time or cohort. Also, instead of specifying a single model, I could have specified the

model list and model-averaged estimates would be computed. The following code

computes the estimates and plots the relationship and confidence interval (Figure 1).
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> # Set up graphics device with 2 plot areas

> pdf("weight_plots.pdf")

> par(mfrow=c(2,1))

> # Compute and plot survival values for females

> Phibymass=covariate.predictions(dipper.results[[11]],

+ data=data.frame(weight=mass.values), indices=c(1))

> # Plot predicted model averaged estimates by weight

> # with pointwise confidence intervals

> plot(Phibymass$estimates$covdata, Phibymass$estimates$estimate,

+ type="l",lwd=2,xlab="Mass(g)",ylab="Female Survival",

+ ylim=c(0,1),las=1)

> lines(Phibymass$estimates$covdata, Phibymass$estimates$lcl,lty=2)

> lines(Phibymass$estimates$covdata, Phibymass$estimates$ucl,lty=2)

> # Compute and plot survival values for males

> Phibymass=covariate.predictions(dipper.results[[11]],

+ data=data.frame(weight=mass.values),indices=c(22))

> plot(Phibymass$estimates$covdata, Phibymass$estimates$estimate,

+ type="l",lwd=2,xlab="Mass(g)",ylab="Male Survival",

+ ylim=c(0,1),las=1)

> lines(Phibymass$estimates$covdata, Phibymass$estimates$lcl,lty=2)

> lines(Phibymass$estimates$covdata, Phibymass$estimates$ucl,lty=2)

> dd=dev.off()

SUMMARY

Beyond the nicety and ease of providing a formula based interface to MARK, use of

RMark enables all of the other tools in R to be used for data manipulation, plotting

etc. With the various database packages in R like RODBC or mysql, and data

manipulation packages like reshape2, data extraction, manipulation and construction

of capture histories can be automated eliminating the need for temporary files. The

results of the fitted model can be further manipulated (e.g. variance components) and

displayed graphically. Using the tools in R, you can also easily conduct simulations
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to produce capture histories, compute estimates from MARK and iterate for simulation

testing or bootstrapping.

The real benefit of RMark is realized with the use of Sweave and a LATEX publishing

system to produce manuscripts that are reproducible and internally documented.

This manuscript was created with those tools. All of the tables, figures and quantities

in the text are inserted directly rather than manually with the obvious potential for

error. Changing the manuscript to accommodate changes in the data only requires

recompiling the manuscript which re-runs the analysis. Computer-intensive analysis

can be cached and re-run selectively. Exchanging documents and data with other

researchers provides a useful educational tool. When a question arises about how a

particular value was computed, the code will either be in the document or external

package. RMark does not preclude making errors but it does make them less likely

and more easily traceable.
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Table 1. -- Examples of constant, time and all-different PIMs for a CJS model with
four annual sampling occasions starting in 1990. The PIMs are triangular
because animals first caught on occasion i can only be recaptured on
occasions i+1 and beyond.

Constant Time All-different
Recapture Recapture Recapture

Initial Capture 1991 1992 1993 1991 1992 1993 1991 1992 1993
1990 1 1 1 1 2 3 1 2 3
1991 1 1 2 3 4 5
1992 1 3 6
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Table 2. -- Design matrix for a CJS Phi(t)p(.) model with four annual sampling
occasions starting in 1990 and all-different PIMs. Indices 1-6 are used
for φ and 7-12 for p. The index specifies the row in the design matrix
and the columns are the parameters. This is the default treatment
contrast used in R in which the first level of a factor is the intercept and
the remaining are ’treatments’. Survival refers to an interval between
occasions and is labeled based on the beginning time.

Index φ : Intercept φ :1991 φ :1992 p: Intercept
1 1 0 0 0
2 1 1 0 0
3 1 0 1 0
4 1 1 0 0
5 1 0 1 0
6 1 0 1 0
7 0 0 0 1
8 0 0 0 1
9 0 0 0 1
10 0 0 0 1
11 0 0 0 1
12 0 0 0 1
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Table 3. -- Design data for a CJS model with four annual sampling occasions start-
ing in 1990 and all-different PIMs and age representing number of years
since initial marking. The index is the row number in the parameters
design data. The indices into the design matrix (called the all-diff-index)
are 1 to 12 and determined by the specified order of parameters in the
model. The design data for φ and p are slightly different because sur-
vival refers to the interval between occasions and the times and ages are
based on the time at the beginning of the interval (e.g. age 0 survival
is from age 0 to age 1) and capture refers to an occasion and the times
and ages at that occasion.

Parameter Index Cohort Time Age
φ 1 1990 1990 0

2 1990 1991 1
3 1990 1992 2
4 1991 1991 0
5 1991 1991 1
6 1992 1992 0

p 1 1990 1991 1
2 1990 1992 2
3 1990 1993 3
4 1991 1992 1
5 1991 1993 2
6 1992 1993 1
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Table 5. -- Estimates of survival from best model for female dippers.

1981 1982 1983 1984 1985 1986
1981 0.607 0.469 0.469 0.607 0.607 0.607
1982 0.469 0.469 0.607 0.607 0.607
1983 0.469 0.607 0.607 0.607
1984 0.607 0.607 0.607
1985 0.607 0.607
1986 0.607

24



6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Mass(g)

F
e

m
a

le
 S

u
rv

iv
a

l

6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Mass(g)

M
a

le
 S

u
rv

iv
a

l

Figure 1. -- Predicted female and male dipper survival at various initial values of
mass(g).
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